组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
机器学习算法已被广泛用于入侵检测系统,包括多层感知器(MLP)。在这项研究中,我们提出了一个两阶段模型,该模型结合了桦木聚类算法和MLP分类器,以提高网络异常多分类的性能。在我们提出的方法中,我们首先将桦木或kmeans作为无监督的聚类算法应用于CICIDS-2017数据集,以预先分组数据。然后,将生成的伪标签作为基于MLP分类器的训练的附加功能添加。实验结果表明,使用桦木和K-均值聚类进行数据预组化可以改善入侵检测系统的性能。我们的方法可以使用桦木聚类实现多分类的99.73%的精度,这比使用独立的MLP模型的类似研究要好。
translated by 谷歌翻译
通过深度学习(DL)优于不同任务的常规方法,已经努力利用DL在各个领域中使用。交通域中的研究人员和开发人员还为预测任务(例如交通速度估算和到达时间)设计和改进了DL模型。但是,由于DL模型的黑盒属性和流量数据的复杂性(即时空依赖性),在分析DL模型方面存在许多挑战。我们与域专家合作,我们设计了一个视觉分析系统Attnanalyzer,该系统使用户能够探索DL模型如何通过允许有效的时空依赖性分析来进行预测。该系统结合了动态时间扭曲(DTW)和Granger因果关系测试,用于计算时空依赖性分析,同时提供映射,表格,线图和像素视图,以帮助用户执行依赖性和模型行为分析。为了进行评估,我们提出了三个案例研究,表明Attnanalyzer如何有效地探索模型行为并改善两个不同的道路网络中的模型性能。我们还提供域专家反馈。
translated by 谷歌翻译
基于生成对抗网络(GAN-IT)的图像翻译是在胸部X射线图像(AL-CXR)中精确定位异常区域的一种有前途的方法。但是,异质的未配对数据集破坏了现有的方法来提取关键特征并将正常与异常情况区分开,从而导致不准确和不稳定的Al-CXR。为了解决这个问题,我们提出了涉及注册和数据增强的两阶段gan-it的改进。对于第一阶段,我们引入了一种可逆的基于学习的注册技术,该技术实际上和合理地将未配对的数据转换为配对数据以进行学习注册图。这种新颖的方法可实现高注册性能。在第二阶段,我们将数据扩展应用于均匀注册框架上的左右肺区域来多样化异常位置,从而通过减轻显示左和右肺病变的数据分布的不平衡来进一步改善性能。我们的方法旨在应用于现有的GAN-IT模型,从而使现有的体系结构受益于翻译的关键功能。通过证明应用AL-CXR的性能在应用提出的方法时均匀提高,我们认为即使学习数据稀缺,也可以在临床环境中部署Al-CXR的GAN-IT。
translated by 谷歌翻译
常识性推理系统应该能够推广到各种推理案例。但是,大多数最先进的方法都取决于昂贵的数据注释,并且在不学习如何执行一般语义推理的情况下过度适合特定基准。为了克服这些缺点,零射击质量检查系统通过将常识性知识图(kg)转换为合成质量质量质量质量验证样本进行模型训练,已将有望作为强大的学习方案显示出来。考虑到不断增加的不同常识性KG类型,本文旨在将零拍传输的学习方案扩展到多种源设置,在这种设置中,可以协同使用不同的KGS。为了实现这一目标,我们建议通过将知识聚合的模块化变体作为一个新的零摄影常识性推理框架来减轻不同知识源之间的干扰丧失。五个常识性推理基准的结果证明了我们框架的功效,从而改善了多个公斤的性能。
translated by 谷歌翻译
恶劣的天气图像翻译属于无监督的图像到图像(I2i)翻译任务,旨在将不利条件领域(例如,雨夜)转移到标准领域(例如,日期)。这是一个具有挑战性的任务,因为来自不利域的图像具有一些伪影和信息不足。最近,许多采用生成的对抗性网络(GANS)的研究在I2I翻译中取得了显着的成功,但仍然有限制将它们应用于恶劣天气增强。基于双向循环 - 一致性损耗的对称架构被采用作为无监督域传输方法的标准框架。但是,如果两个域具有不平衡信息,它可能会导致较差的转换结果。为了解决这个问题,我们提出了一种新的GaN模型,即Au-GaN,它具有不对称的域翻译的非对称架构。我们仅在普通域生成器(即雨夜 - >日)中插入建议的功能传输网络($ {T} $ - 网),以增强不利域图像的编码特征。此外,我们介绍了对编码特征的解剖学的非对称特征匹配。最后,我们提出了不确定感知的周期 - 一致性损失,以解决循环重建图像的区域不确定性。我们通过与最先进的模型进行定性和定量比较来证明我们的方法的有效性。代码在https://github.com/jgkwak95/au-g中提供。
translated by 谷歌翻译
我们通过补充每个图像的弱点将内扫描(iOS)和牙科锥形电脑层析术(CBCT)图像集成到一个图像中的完全自动化方法。单独的牙科CBCT可能无法通过有限的图像分辨率和各种CBCT伪像(包括金属诱导的伪像)来描绘牙齿表面的精确细节。 iOS非常准确地扫描窄区域,但它在全拱扫描过程中产生累积缝合误差。该方法不仅要补偿具有iOS的CBCT衍生的牙齿表面的低质量,而且还要校正整个牙弓的IOS的累积拼接误差。此外,整合提供了一种图像中CBCT的IOS和齿根的牙龈结构。所提出的全自动方法包括四个部分; (i)iOS数据(TSIM-iOS)的单个牙齿分割和识别模块; (ii)CBCT数据(TSIM-CBCT)的个体齿分割和识别模块; (iii)IOS和CBCT之间的全球到局部牙齿登记; (iv)全拱ios的缝合纠错。实验结果表明,该方法分别达到了0.11mm和0.30mm的地标和表面距离误差。
translated by 谷歌翻译
由于锥形光束计算机断层扫描(CBCT)图像的三维(3D)单个齿的准确和自动分割是一个具有挑战性的问题,因为难以将个体齿与相邻齿和周围的肺泡骨分开。因此,本文提出了一种从牙科CBCT图像识别和分割3D个体齿的全自动方法。所提出的方法通过开发基于深度学习的分层多步模型来解决上述难度。首先,它自动生成上下钳口全景图像,以克服由高维数据和与有限训练数据集相关的维度的诅咒引起的计算复杂度。然后使用所获得的2D全景图像来识别2D单独的牙齿并捕获3D个体齿的兴趣和紧密区域(ROIS)。最后,使用松动和紧密的ROI实现了精确的3D个体齿分割。实验结果表明,牙齿识别的牙齿识别的F1分数为93.35%,对于各个3D齿分割,骰子相似度系数为94.79%。结果表明,该方法为数字牙科提供了有效的临床和实用框架。
translated by 谷歌翻译
扬声器日流是一个标签音频或视频录制的任务,与扬声器身份或短暂的任务标记对应于扬声器标识的类,以识别“谁谈到何时发表讲话”。在早期,对MultiSpeaker录音的语音识别开发了扬声器日益衰退算法,以使扬声器自适应处理能够实现扬声器自适应处理。这些算法还将自己的价值作为独立应用程序随着时间的推移,为诸如音频检索等下游任务提供特定于扬声器的核算。最近,随着深度学习技术的出现,这在讲话应用领域的研究和实践中引起了革命性的变化,对扬声器日益改善已经进行了快速进步。在本文中,我们不仅审查了扬声器日益改善技术的历史发展,而且还审查了神经扬声器日益改善方法的最新进步。此外,我们讨论了扬声器日复速度系统如何与语音识别应用相结合,以及最近深度学习的激增是如何引领联合建模这两个组件互相互补的方式。通过考虑这种令人兴奋的技术趋势,我们认为本文对社区提供了有价值的贡献,以通过巩固具有神经方法的最新发展,从而促进更有效的扬声器日益改善进一步进展。
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译